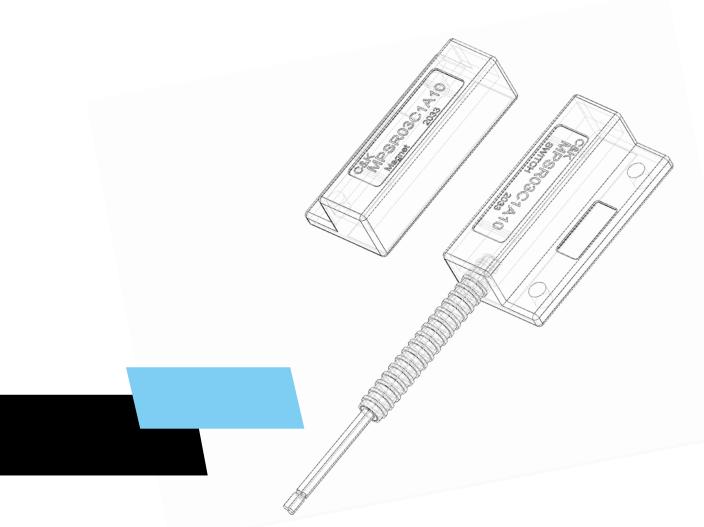


CEX SENSOR BRODUCT GUDE

This product guide contains a selection of our most popular switches and components.



				Navigation		
Market	Segment		Application	тнв 款	MSW	
	tue		Interior Light Controls			
Automotive	nfotainment		Climate Control			
	<u> </u>	1 CORE	Automotive Entertainment Cluster			
Au	Vehicle Access Systems	0	Trunk Open/Close Detection			
	Veh Acc Syst		Trailer/Container Door Open Detection			
Jer	ve		Gaming Controllers	Х		
High-End Consumer	utomotiv	Automotive	Virtual Reality Controllers	х		
ld Co	A		Racing Simulator Controllers	Х		
gh-Er	Aviation		Drone Controllers	Х		
Hi	Avia		Flight Simulator Controllers	Х	x	
	al eo	and the second second	Pro Audio Controllers			
	Professiona Audio/Video	Broadcast Studio Robotic Camera Systems		х		
		4 Lot	Pro Lighting Controllers			
Industrial	ы		Industrial Robots		х	
Indu	Automation	Linear Actuators				
			Computer Aided Design & Manufacturing	Х	x	
	Security		Remote Monitoring			
	Sec		Window/Door Sensing			
Medical	Devices		Robotic Surgery	Х	х	
Med	Dev		Automatic Emergency Defibrilators (AEDs)			

Product Selection Guide

	De	Rc	tary		
MPS	MPSR	LTS (Rotary)	LTS (Linear)	ENC	ENC W/Screen
No.			and the second se	L.	
		x	х	x	x
		x	х	x	x
				x	x
x					
x	x				
				x	x
				x	x
		x	х	x	x
		x	х	x	x
		x	х	x	x
x	x				
x	x				
		x	х	x	x
x	x				
x	x				
X				x	x
				x	x

This is a blank page

PRODUCT SELECTION GUIDE

SENSOR PRODUCTS

C&K's proud history of product innovation continues with sensor solutions ideal for position, proximity sensing, and touch sensing in a wide range of applications. Inherently robust with available IP ratings up to IP69, MPS and MPSR are capable of millions of operations using magnetic actuation to provide contactless detection across hermetic barriers and distances up to 1". They're designed to be easy to install and easily customizable to fit the needs of applications ranging from automotive and industrial to construction, security and anti-tampering, and medical devices. The New LTS Series features capacitive touch control with a wide range of customizable options that will fulfill the demans of audio/video, industrial, automotive and other control applications.

MPS SERIES

Magnetic Proximity Sensors

Features / Benefits

Long life - 4M operations Sealed contacts Quality construction UL61058 Quick & easy installation

Typical Applications Remote Monitoring Anti-Tamper Detection Security

Function

SPST N.O. subminiature surface mount (adhesive or flange), side exit leads, 1" make gap

MPSR SERIES

Ruggedized Magnetic Proximity Sensors

Features / Benefits

Long life - 4M+ operations Hermetically sealed contacts Form C (SPDT) contacts w/ 3 W rating IP69 Rating Quick & easy installation

Contact Rating: 200 mA @ 3 W, 30 VDC

Typical Applications

Remote monitoring Anti-tamper detection Security

PART NUMBER

PART NUMBER

MPS45WGW

MPSR03C1A10

MPSR05A1A10

NEW

* Contact C&K for custom options availability

Function

Form C (SPDT N.O. / N.C.) 3 W / 30 VDC 72" Stainless steel hose w/ bare wire leads

Form A (SPST N.O) 5W / 180 VDC 72" Stainless hose w/bare wire leads

LTS (ROTARY) SERIES

Illuminated Capacitive Touch Sensors

Features / Benefits

Choice of Encoder or VR Operation Modes Scroll Plus Additional Key Output Multiple Customizable Sensing Zones Multiple Cap Options Integrated Illumination Capacitive Touch Controls

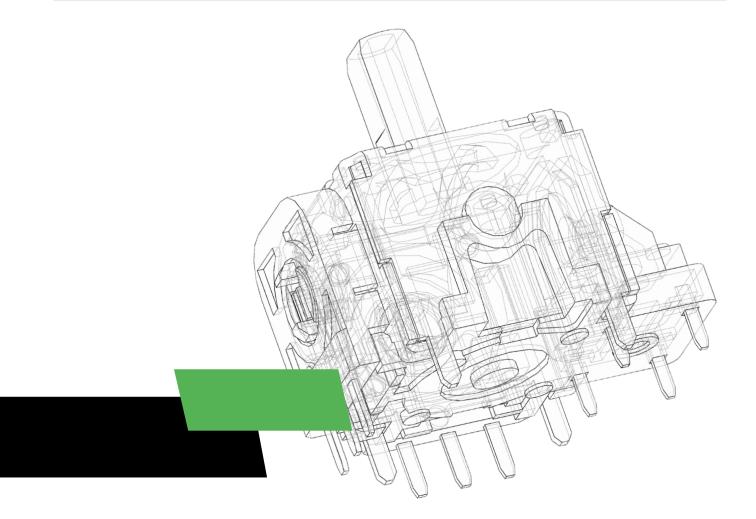
Typical Applications

Audio/Video Equipment Consumer Products IT Equipment Communications Equipment Appliances Lighting & Fan Controls

PART NUMBER	Function & Output	One Key Operation	Block 1 LED Color	Block 2 LED Color	Block 3 LED Color	One Key LED Color	Termination
LTSR14V-TXR003K-BPGXXC	Rotary 14 Position (VR)	Toggle Mode	Blue	Red & Blue	Green	N/A	Cable & Connection

LTS (LINEAR) SERIES

Illuminated Capacitive Touch Sensors

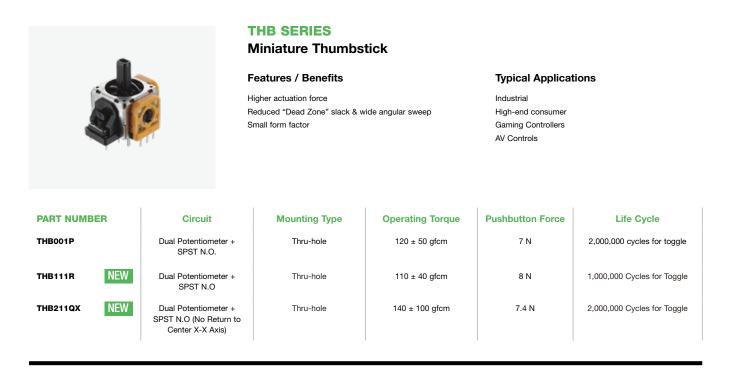

Features / Benefits

Choice of Encoder or VR Operation Modes Scroll Plus Additional Key Output Multiple Customizable Sensing Zones Multiple Cap Options Integrated Illumination Capacitive Touch Controls

Typical Applications

Audio/Video Equipment Consumer Products IT Equipment Communications Equipment Appliances Lighting & Fan Controls

Operation LED Color	LED Color	LED Color	LED Color	
LTSL15V-TXL004K-YGBPXC Linear 15 Position (VR) Toggle Mode Yellow	Green	Blue	Red & Blue	Cable & Connection



PRODUCT SELECTION GUIDE

Navigation Sensors

C&K's navigation sensors are miniature, compact and multi-directional products. The THB series dual action 360° joystick is ideal for gaming, drone, and other controllers. The MSW packs three axes of movement and a pushbutton into one device for the ultimate control of robotics or industrial controllers.

Navigation Sensors

MSW SERIES

Multifunction Hall Effect Joystick


Features / Benefits

Analog Voltage Output for Easy Interfacing Contactless Hall Effect Sensing for Long Life Tri-axis Operation Integrated Pushbutton Panel Mount for Easy Installation Cable and Connector Termination

Typical Applications

Industrial Controllers Robotics Medical Instruments AV Equipment

PART NUMBER	Circuit	Mounting Type	Operating Torque	Pushbutton Force	Life Cycle	
MSW311P1C NEW	Tri-Axis Analog Voltage Output + SPST N.O	Panel	TBD (X/Y Axis) TBD (Z Axis)	TBD	5,000,000 cycles for X/Y Axis 1,000,000 cycles for Z Axis	

PRODUCT SELECTION GUIDE

Rotary Encoders

Rotary encoders from C&K are available with variety of indexing options. The ENC Series features easy install connector sockets and integrated pushbutton. The TFT screen provides wide design flexibility for consumer, audio/video, industrial, and other applications.

Rotary Encoders

ENC SERIES

Rotary Encoder

Features / Benefits

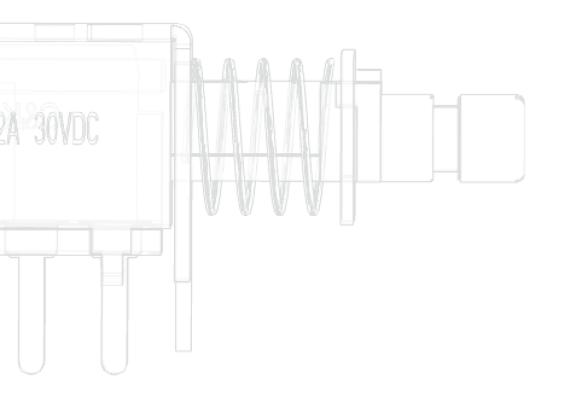
Clear detent / haptic feel Two channel, 2-bit code output Quadrature (incremental type) Integrated pushbutton

Typical Applications

Automotive interior control Industrial equipment Test & instrumentation Medical equipment

PART NUMBER	Function	Contact Rating	Rational Torque	Pushbutton Force	Operating Life	Termination
ENCOS16D2S65C	16 position Incremental Encoder	Rotary: 30 mA @ 5 V DC Pushbutton: 10 mA @ 5 V DC	265 gfcm	600 ± 20% gf	300,000 cycles	SMT
ENC0S24D2S65R	24 position Incremental Encoder	Rotary: 30 mA @ 5 V DC Pushbutton: 10 mA @ 5 V DC	265 gfcm	600 ± 20% gf	300,000 cycles	Connector

ENC SERIES Rotary Encoder


Features / Benefits

Clear detent / haptic feel Two channel, 2-bit code output Quadrature (incremental type) Integrated pushbutton

Typical Applications

Automotive interior control Industrial equipment Test & instrumentation Medical equipment

PART NUMBER	Function	Contact Rating	Rational Torque	Pushbutton Force	Operating Life	Termination
ENCOT24D5SX5T	24 position Incremental Encoder w/screen	Rotary: 30 mA @ 5 V DC	450 gfcm	$600 \pm 20\%$ gf	500,000 cycles	Pin Out
NEW		Pushbutton: 10 mA @ 5 V DC				

AMERICAS +1.617.969.3700

ASIA +852.3713.5288

EUROPE +33.1.60.24.51.51